
Security in the LLM Era: the 
Good, the Bad and the Ugly
Cyber Security Coalition - 06/06/2024
Tim Van hamme
Thomas Vissers



Tim Van hamme

• Post doctoral researcher 
@DistriNet, KU Leuven
• A decade of experience on the 

intersection of Machine 
Learning and Security

• Post doctoral researcher 
@DistriNet, KU Leuven
• Formerly @Cloudflare
• Distinguished Engineer –

Bot detection program
• Engineering Manager – 

API security

Thomas Vissers



Outline

• Part 0: LLM fundamentals
• Part 1: State-of-the-art research

• What attacks exist?
• How to think about ML security?

• Part 2: Grounding in reality
• RAG demo
• Iteratively adding security

• Part 3: Where do we go from here?



Large Language Models or GPT’s

Generative

4

Pre-trained Transformer



How Do They Work?

• Predict the next word
• The model learns the probability of the next word

5



From LLMs to Assistants

• Alignment = 
Fine-tuning the model to
• follow instructions 
• provide “good” answers

6

Photo illustration by Lisa Larson-Walker using Dreamscopeapp. 
Photo by Government House NZ via Getty Images.

https://dreamscopeapp.com/


From LLMs to Assistants: Alignment

7



8
[The Reversal Curse: LLMs trained on "A is B" fail to learn "B is A"]



Getting Accurate Responses

RAG Everything

Fine-tuningPrompt-engineering

LLM Optimization
How the model needs to act

Context Optimization
What the model needs to know



Part 1: State-of-the-Art Security Research



Adversarial Machine Learning

Confidentiality Integrity Availability

Deployment Model stealing
Model Inversion
Membership 
inference

Evasion
Impersonation
Adversarial prompt

Sponge attacks

Developement Training data 
poisoning to facilitate 
privacy leaks at 
deployment

Data/Model poisoning Sponge poisoning

Adversary’s Goal
Adversary’s 
Capabilities

Adversary’s Knowledge: white-box / black-box
11



Abuse Prevention

• Fear for misuse of the 
technology
• Generating malware
• Phishing and 

misinformation
• Easy access to dangerous 

knowledge
• Use of offensive languague
• …

• Alignment => AI safety 
training



“Jailbreaking” - Circumventing AI Safety Training

• Prompt engineering
• Role-playing
• Developer mode
• Instruction obfuscation
• Starting with an Affirmative response
• Using a different languague
• …

• Automatic Jailbreaking
• Gradient based input optimization
• LLM as an attacker

Chu, Junjie, et al. "Comprehensive assessment of jailbreak attacks against llms." (2024).
Zou, Andy, et al. "Universal and transferable adversarial attacks on aligned language models." (2023).
Chao, Patrick, et al. "Jailbreaking black box large language models in twenty queries." (2023).
Yong, Zheng-Xin, Cristina Menghini, and Stephen H. Bach. "Low-resource languages jailbreak gpt-4." (2023).



Automating Jailbreaks

14

Zou, Andy, et al. "Universal and transferable adversarial attacks on aligned language models." (2023).





16

Qi, Xiangyu, Kaixuan Huang, Ashwinee 
Panda, Peter Henderson, Mengdi 
Wang, and Prateek Mittal. “Visual 
Adversarial Examples Jailbreak Aligned 
Large Language Models (2023).



Poisoning

Rando, Javier, and Florian Tramèr. “Universal Jailbreak Backdoors from Poisoned Human Feedback.” 2024.



18



Old Problems New Appearances

• An LLM can invoke function calls
• Indirect prompt injection
• The data plane and control plane are 

getting mixed up
• SQLI
• XSS
• CSRF

19

Data Plane

Co
nt

ro
l P

la
ne

Data Plane

Control Plane
Greshake, Kai, et al. "Not what you've signed up for: Compromising real-
world llm-integrated applications with indirect prompt injection.” 
Proceedings of the 16th ACM Workshop on Artificial Intelligence and 
Security. 2023.



Part 2: Grounding in Reality 
RAG Security Demo



RAG: Retrieval Augemented Generation
• Currently, one of the most popular design patterns 

• Providing domain-specific, relevant and up-to-date responses

• Reducing hallucinations
• References to sources can be given

• Relatively simple and cost-effective

• Garbage in, Garbage out
• RAG responses depend on the quality and relevance of the retrieved data



RAG: Retrieval Augemented Generation



Basic RAG Architecture



Let’s Demo RAG!

• Setup: 
AI Assistant that answer questions based on a (fictional) 
company’s documents

• Security challenge: 
Company does not want all types of questions to be 
answered

✅ “Who is the Director of Engineering at our company?” 
✅ “When is the office Christmas party?” 
🚫 “What is the salary of Emily Johnson?”



Basic RAG Architecture



System Prompts

• A system prompt allows you to provide instructions and context to an 
LLM before presenting it with a question or task. 
• System prompts can include:
• Task instructions and objectives
• Rules and guidelines
• Personality traits, conversational roles, and tone guidelines
• Etc.



v1: Generic RAG System Prompt



v2: System prompt instructions



Guardrails
• “Using LLMs to check LLMs”

• Input guardrails block inappropriate user messages 
• Topical guardrails
• Jailbreaking

• Output guardrails verify the response of the LLM
• Hallucination/fact-checking guardrails
• Moderation guardrails



v3: Input Guardrail



v4: Input and Output Guardrail



RAG with Access Control

• The RAG application suffers from a design flaw. It can retrieve 
sensitive information without the notion of access control.
• User permissions should be propagated through your application 

layer to the retrieval step.
• In langchain, out-of-the-box support for access control is lacking.



v5: With RBAC



RAG with Access Control Downside

• There is a security – utility trade-off!
• Access to more documents provides more utility
• What the model knows, it can leak



Conclusion / Segway

• LLM applications are
• Easy to prototype
• Hard to secure



Part 3: Where do we go from here?



The Bad

• More security implies less utility
• There is no such thing as software 

verification for ML
• Thus, we will have to do security testing



The Good

• Many things we can do
• Lot’s of work!

• Defense in depth
• Threat modeling during design phase
• Stress testing / red teaming during 

development and deployment
• Input and output guardrails
• Detection and response



The Ugly

• No seperation between data 
and control plane
• Prevent excessive agency
• Input sanitization
• Avoid eval calls

Data Plane

Control Plane



Frameworks

• Cybersec 2 – Meta’s cybersecurity evaluation suite (dataset)
• Alternative: Jailbreakbench artifacts

• PyRit – Microsoft tool for automated Red Teaming of LLM Apps
• Alternative: Garak

• Nemo Guardrails – Guardrails (Nvidia)
• Alternative: Guardrails AI

• OWASP Top 10 for LLM Applications – Top 10 threats (qualitatively)
• Alternative: MITRE Atlas – Attacker killchain for ML applications
• Alternative: Google SAIF

• NIST AI RMF playbook – Risk Management for ML
• Alternative: ISO/IEC 42001



Challenge Us! 
Are You Building (Secure) LLM Applications?
As LLM security researchers, we're 
actively seeking partnerships with 
businesses building LLM applications. 
Together, we can identify and address 
the security challenges you face. 
This collaboration will not only benefit 
your project, but also contribute 
valuable insights to the development of 
secure LLM technologies.

Connect with us


